Fatal methadone toxicity: potential role of CYP3A4 genetic polymorphism.
نویسندگان
چکیده
Methadone is difficult to administer as a therapeutic agent because of a wide range of interindividual pharmacokinetics, likely due to genetic variability of the CYP450 enzymes responsible for metabolism to its principal metabolite 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP). CYP3A4 is one of the primary CYP450 isoforms responsible for the metabolism of methadone to EDDP in humans. The purpose of this study was to evaluate the role of CYP3A4 genetic polymorphisms in accidental methadone fatalities. A study cohort consisting of 136 methadone-only and 92 combined methadone/benzodiazepine fatalities was selected from cases investigated at the West Virginia and Kentucky Offices of the Chief Medical Examiner. Seven single nucleotide polymorphisms (SNPs) were genotyped within the CYP3A4 gene. Observed allelic and genotypic frequencies were compared with expected frequencies obtained from The National Center for Biotechnology Information dbSNP database. SNPs rs2242480 and rs2740574 demonstrated an apparent enrichment within the methadone-only overdose fatalities compared with the control group and the general population. This enrichment was not apparent in the methadone/benzodiazepine cases for these two SNPs. Our findings indicate that there may be two or more SNPs on the CYP3A4 gene that cause or contribute to the methadone poor metabolizer phenotype.
منابع مشابه
Involvement of CYP3A4, CYP2C8, and CYP2D6 in the metabolism of (R)- and (S)-methadone in vitro.
To clarify the oxidative metabolism of methadone (R)- and (S)-enantiomers, the depletion of parent (R)- and (S)-methadone and the formation of racemic 2-ethylidene-1,5-dimethyl-3,3-diphe-nylpyrolidine were studied using human liver microsomes and recombinant cytochrome P450 enzymes. Based on studies with isoform-selective chemical inhibitors and expressed enzymes, CYP3A4 was the predominant enz...
متن کاملRole of CYP2B6 in stereoselective human methadone metabolism.
BACKGROUND Metabolism and clearance of racemic methadone are stereoselective and highly variable, yet the mechanism remains largely unknown. Initial in vitro studies attributed methadone metabolism to cytochrome P4503A4 (CYP3A4). CYP3A4 was also assumed responsible for methadone clearance in vivo. Nevertheless, recent clinical data do not support a primary role for CYP3A4 and suggest that CYP2B...
متن کاملInfluence of genetic polymorphisms in CYP3A4, CYP3A5, GSTP1, GSTM1, GSTT1 and MDR1 genes on survival and therapy-related toxicity in multiple myeloma.
We investigated the role of single nucleotide polymorphisms in genes encoding for drug-metabolizing enzymes in 209 newly diagnosed multiple myeloma patients included in a clinical trial comparing single with double intensive therapy. We observed no significant association between polymorphisms in CYP3A4, CYP3A5, MDR1, GSTM1 and GSTT1 and outcome either after treatment with induction chemotherap...
متن کاملMortality associated with New South Wales methadone programs in 1994: lives lost and saved.
OBJECTIVES To estimate the effects of methadone programs in New South Wales on mortality. DESIGN AND CASES: Retrospective, cross-sectional study of all 1994 New South Wales coronial cases in which methadone was detected in postmortem specimens taken from the deceased. Cases were people we identified as patients in NSW methadone maintenance programs or those whose deaths involved methadone syrup...
متن کاملEnantiomeric metabolic interactions and stereoselective human methadone metabolism.
Methadone is administered as a racemate, although opioid activity resides in the R-enantiomer. Methadone disposition is stereoselective, with considerable unexplained variability in clearance and plasma R/S ratios. N-Demethylation of methadone in vitro is predominantly mediated by cytochrome P450 CYP3A4 and CYP2B6 and somewhat by CYP2C19. This investigation evaluated stereoselectivity, models, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of analytical toxicology
دوره 38 8 شماره
صفحات -
تاریخ انتشار 2014